Cheese Short Course

Treese Selection:

Cal Poly SLO

Dairy Products Technology Center

Larry Stein

Courses

- Cheese Short Course 1
 - The class I took
- Dairy Science and Tech for Farmstead/Artisan Cheesemakers

Short Course

• Topics addressed included:

- Basics of Dairy Chemistry & Microbiology
- Starter Cultures and Coagulants
- Basic Steps of Cheese Manufacture
- Cheese Yield and Yield Calculations
- Sensory Evaluation of Cheese
- Titratable Acidity and pH
- Plant Cleaning, Sanitation & Food Safety
- Full Day of Hands-on pilot scale Cheese making Instruction (Participants are encouraged to bring appropriate attire)
- Introduction to manufacture of various cheese varieties
- Worldwide cheese tasting

Farmstead Course

• Course Description

- Approximately 2.5 days of classroom-style instruction & discussion, and 1.5 days of hands-on cheese manufacture and cheese sampling.
- Visit to working Farmstead Cheese operation.
- Overview of the world of cheese
- Basic chemistry, microbiology and other scientific concepts
- Milk composition and milk quality and their importance in cheese manufacture
- Other ingredients and their function in cheese manufacture
- Key underlying principles in cheese manufacture
- Unit operations in conversion of milk to cheese
- Equipment, plant layout, and sanitation considerations in cheese making
- Modifications in basic cheese manufacture to make other cheese varieties
- September 11-14, 2012 : \$725

What is Cheese?

- Basically the extraction of the solids from mammalian milk. Fat and Protein
- "Average" milk composition (1 G = 8.6#):
 - 87.6% water (7.5#)
 - 12.4% solids (1.1#)
 - 3.7% Lipid (milkfat)
 - 8.7% Non-fat milk solids
 - 3.3% Proteins
 - 4.7% Carbohydrate (Lactose)
 - 0.7% Ash

Milkfat

- 98% Triglycerides
 - Glycerol backbone
 - 3 fatty acids
 - Long chain fatty acid
 - What the animal eats
 - 75 different triglyceride combinations
- This is what creates the flavor
- Creaming ability

Proteins

- 80% Casein Micelles
- 20% Whey Proteins

	Whey Protein	Caseins
рН 4.6	Soluble	Insoluble
Chymosin (rennet)	Soluble	Insoluble
Heat (boiled)	Insoluble	Soluble

Caseins

- Micelles, particles
- Like a Kush ball
 - They have protruding branches like hair
 - These are called k-Caseins
- With the k-Caseins intact the caseins will not stick together
- This is why milk doesn't clump together

Whey Proteins

- Become soluble in lower pH
- In some business models they whey protein is the main product. Cheese is secondary.
- Also soluble in the presence of chymosin.

How is a gel formed?

- A gel is the same as the curd.
- Forms when the casein micelles stick together to form a matrix trapping the larger milkfat globules.
- The casein micelles will stick together when the k-Casein bonds are snipped.
- Chymosin is the enzyme that breaks the k-Casein bond.

Things that interfere with curd formation

- Homogenization
 - This process forces the milkfat globules to be much smaller.
 - The milk doesn't separate with the cream floating
 - This makes it easier for the milkfat to move in the curd thus making a softer curd.

Things that interfere with curd formation

- Pasteurization
 - Milk is heated to kill dangerous microbes
 - The heating process denatures some of the whey proteins, breaks them apart.
 - These enzymes from the denatured whey will attach themselves to the k-Casein bond.
 - This will interfere with the Chymosins' ability to break the k-Casein bond.
 - A softer curd will be formed.
 - If to high a heat, like in ultra-pasteurized milk, all the whey protein is broken down and no curd can form.

Things that aid curd formation

- Ionic Ca is necessary to help hold the curd formation.
 - Some Ca is destroyed in the pasteurization process.
 - To much Ca and you can't stretch the curd as in mozzarella
 - To little and the curd will crumble, as in feta
 - This is why we sometimes add CaCl to the milk.
 - It depends upon what type of cheese you're making

More things that aid curd formation

- Heat helps the milk coagulation
- Acidity
 - lower pH makes the whey proteins soluble while the casein proteins remain insoluble
 - A result of culture addition
 - Direct acidification (fresh non-aged cheeses only)
- Cultures
 - The bacteria converts the lactose into lactic acid
 - The lower pH aids in the curd formation
 - The enzymes help in the curd shrinkage and flavor

Summary

- In order to get the best curd formation:
 - Use non-homogenized milk
 - Add CaCl depending upon the cheese type
 - Use low temp pasteurization (or none if aged)
 - Add culture or direct acid
 - Set to correct temperature
 - Check pH and do not add chymosin until pH has dropped. This indicates that the culture is working.
 - Add chymosin, mix gently and let sit.